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The genusKopsia (Apocynaceae, subfamily Plumerioideae)
is comprised of about 30 species that grow in South and Southeast
Asia.1,2 Lapidilectine B (1) is one of several 5,6,12,13-tetrahydro-
11a,13a-ethano-3H-pyrrolo[1′,2′:1,8]azocino[5,4-b]indoles that
have been isolated from this genus of plants.3-5 It was isolated
by Awang, et al. from the leaves of the treeKopsia lapidilectain
1992, and its structure was elucidated by two-dimensional NMR
experiments.3,4,6 The absolute configuration of lapidilectine B is
proposed to be as shown based on biogenesis and a positive
Cotton effect.3 Although there are no reports on the pharmaco-
logical effects ofKopsia lapidilectaalkaloids, various medicinal
uses of otherKopsiaalkaloids have been reported, including the
treatment of rheumatoid arthritis, dropsy, tonsillitis, and hyperten-
sion.2,5,7No synthetic studies onKopsia lapidilectaalkaloids have
been reported.8 We report herein the first total synthesis of a
Kopsia lapidilecta alkaloid, namely (()-lapidilectine B (1).
Notable elements of the synthesis are the assembly of the pyrroline
ring by the cycloaddition of a 2-azaallyllithium (2) with the
acetylene equivalent phenyl vinyl sulfide9 (Scheme 1) and the
assembly of a key 1,2-dihydro-3H-indol-3-one (an “indoxyl”) via
a Smalley cyclization10,11 of an azido enolate. Further, an
intramolecularN-alkylation is used to generate the perhydroazo-
cine ring.

A mixture ofcis- andtrans-cyclohexane-1,4-diol was monoben-
zylated and oxidized to give the known12 ketone3 (Scheme 1).
Formation of the enol triflate of313 followed by stannylation
according to Wulff and co-workers14 gave4. Stille carbonylative
coupling15,16of 4 with the known iodoaniline derivative515 gave

the enone6. Conjugate addition of a vinyl group, which would
eventually supply the carbonyl group at C-16 of lapidilectine B,
was accomplished using vinylmagnesium bromide under Lip-
shutz’s conditions,17,18producing a 3:1 mixture of diastereomeric
ketones7 after hydrolysis of the perhydro-1,3-dimethyl-1,3,5-
triazin-2-one protecting group. Both stereoisomers of7 bore a
trans relationship between the vinyl and benzyloxy groups, as
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Scheme 1a

a LDA, THF, -78 °C; PhNTf2, 0 °C, 2 h (82%).b (Me3Sn)2, LiCl,
cat. Pd(PPh3)4, THF, reflux, 5 h (91%).c CO (80 psi), cat. Pd2(dba)3,
Ph3As, LiCl, 4 Å molecular sieves, NMP, 70°C, 12 h (98%).d 3 equiv
(2-thienyl)Cu(CN)Li, 3 equiv CH2dCH2MgBr, BF3‚OEt2, THF,-78 °C,
10 h (84%).e 10 equiv concd HCl, MeOH, rt, 30 min (68%).f 3 equiv
concd HCl, 2 equiv NaNO2, EtOH, 0°C, 30 min; 4 equiv NaN3 in H2O.
g 5 equiv KOH iPrOH, 15°C, 1 h (68%, two steps).h t-BuLi, THF, -78
to -50 °C, 1 h; 2 equiv MeOCOCl, 0°C, 1 h (89%).i OsO4, N-methyl-
morpholineN-oxide, acetone, rt, 8 h (87%).j 3.1 equiv allylmagnesium
bromide, THF,-40 °C to rt, 3 h.k NaIO4, aq THF, pH 7, rt, 3 h (75%,
two steps).l 5 equiv camphorsulfonic acid, MeOH, rt, 2 h (82%).m O3,
pyridine, CH2Cl2, MeOH,-78°C, 5 min; NaBH4 (80-87%).n TBDPSCl,
imidazole, CH2Cl2, 0 °C to rt, 3 h (88%).o Pd(OH)2, cyclohexene, EtOH,
reflux, 4 h (82-92%).p tetra-n-propylammonium perruthenate,N-methyl-
morpholine-N-oxide, 4 Å molecular sieves, CH2Cl2, rt, 1 h (95%).
q TeocCl,iPr2NEt, CH2Cl2, rt, 1 h (91%).r m-CPBA (1 equiv), NaHCO3,
CH2Cl2, -30 °C to rt, 2 h (88%).s pyridine, Cl2CdCCl2, 140 °C, 4 h
(85%).t BCl3, CH2Cl2, -10 °C, 1 h.u PCC, Celite, CH2Cl2, rt, 2 h (45%,
two steps).V HF‚pyridine, THF, rt, 2 h (88%).w MsCl, iPr2NEt, CH2Cl2,
-10 °C to rt, 30 min (92%).x TFA, CH2Cl2, rt, 1 h. y iPr2NEt, MeCN,
60 °C, 10 h; 3 equiv DBU (45%, two steps).
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verified by the relative configuration of a later compound in the
synthesis (i.e.,12, vide infra). Diazotization of the aniline7
followed by displacement with sodium azide gave theo-azido
ketone8.19,20 Treatment of8 with KOH according to Smalley
and co-workers10,11 caused cyclization to the diastereomeric 1,2-
dihydro-3H-indol-3-ones9 (shown) and10 (not shown) in good
overall yield from the aniline7. The major diastereomer9 was
subjected toN-acylation and dihydroxylation to give the diol11
as a 6:1 mixture of diastereomers. Allylation of the ketone,
oxidative cleavage of the diol, and methyl acetal formation
produced a single diastereomer of12, whose structure was verified
by X-ray crystallography. The minor amino ketone10 from the
Smalley cyclization could also be transformed into12, except
that the benzyloxy-bearing stereocenter had the opposite config-
uration.21 Ozonolysis of12, reduction, and silylation gave13,
which was debenzylated and oxidized22 to afford the pivotal
ketone14. Condensation of a solution of14 in toluene with
(aminomethyl)tributylstannane23 in the presence of trimethyl-
aluminum9b generated a solution of the (2-azaallyl)stannane15,
which was diluted with THF and treated sequentially with phenyl
vinyl sulfide andn-BuLi at -78 °C. The spirocyclic pyrrolidine

16was isolated as a mixture of regio- and stereoisomers (or amide
rotamers)24 in 75% yield based on the ketone14. Protection of
16 as its Teoc derivative followed by oxidation of the sulfide to
the sulfoxide and elimination gave the 3-pyrroline17 in good
overall yield.24 Hydrolysis of the methyl acetal with aqueous acid
was problematic, but demethylation with boron trichloride
provided the lactol, which was oxidized to a lactone with PCC.
Deprotection of the alcohol and mesylation afforded18. Finally,
Teoc removal with CF3CO2H followed by heating the trifluoro-
acetate salt with Hu¨nig’s base gave (()-lapidilectine B (1), which
exhibited physical data identical to those of the natural alkaloid,
spectra of which were kindly provided by Dr. Khalijah Awang
of the University of Malaya.25

In summary, the first total synthesis of (()-lapidilectine B has
been accomplished, which also represents the first synthesis of a
member of the 5,6,12,13-tetrahydro-11a,13a-ethano-3H-pyrrolo-
[1′,2′:1,8]azocino[5,4-b]indole class of alkaloids. The pivotal
2-azaallyl anion cycloaddition proceeded in good yield and facial
selectivity to produce the spirocyclic pyrrolidine substructure.
Other key steps include the first implementation of Smalley’s
method for 1,2-dihydro-3H-indol-3-one (indoxyl) synthesis in a
natural product setting, and a successful intramolecularN-
alkylation to generate the perhydroazocine nucleus of this alkaloid.
Further studies on the use of these methods for the synthesis of
relatedKopsiaalkaloids are underway.
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